Fit results: Summer 2012 (pre-CKM12)

Parameter Input value Full fit SM Prediction
\bar{\rho} - 0.132 \pm 0.021 -
\bar{\eta} - 0.348 \pm 0.015 -
\rho - 0.136 \pm 0.022 -
\eta - 0.358 \pm 0.014 -
A - 0.826 \pm 0.013 -
\lambda 0.2254 \pm 0.0009 0.2254 \pm 0.0006 -
|V_{ub}| 0.00382 \pm 0.00056 0.00363 \pm 0.00012 0.00363 \pm 0.00013
|V_{cb}| 0.041 \pm 0.001 0.04196 \pm 0.0006 -
\sin\theta_{12} - 0.22545 \pm 0.00065 -
\sin\theta_{23} - 0.04196 \pm 0.0006 -
\sin\theta_{13} - 0.00363 \pm 0.00012 -
\delta [^{\circ}] - 69.3 \pm 3.2 -
m_{b}\mathrm{ [GeV/c^{2}]} 4.19 \pm 0.04 - -
m_{c}\mathrm{ [GeV/c^{2}]} 1.28 \pm 0.04 - -
m_{t}\mathrm{ [GeV/c^{2}]} 164.1 \pm 0.9 164.15 \pm 0.85 -
\Delta m_{s} \mathrm{[ps^{-1}]} 17.69 \pm 0.08 17.685 \pm 0.075 17.5 \pm 1.3
\Delta m_{d} \mathrm{[ps^{-1}]} 0.507 \pm 0.004 - -
\Delta m_{K} \mathrm{[ps^{-1}]} 1.8 \pm 1.8 - -
f_{B_{s}} 0.233 \pm 0.01 0.2285 \pm 0.0056 -
f_{B_{s}}/f_{B_{d}} 1.2 \pm 0.02 1.204 \pm 0.018 -
B_{B_{s}}/B_{B_{d}} 1.05 \pm 0.07 1.091 \pm 0.051 -
B_{B_{s}} 0.87 \pm 0.04 0.857 \pm 0.035 -
B_{k} 0.75 \pm 0.02 0.757 \pm 0.019 0.865 \pm 0.084
\alpha [^{\circ}] 90.6 \pm 6.6 88.8 \pm 3.1 87.8 \pm 3.7
\beta [^{\circ}] - 21.93 \pm 0.86 24.3 \pm 1.9
\sin(2\beta) 0.68 \pm 0.023 0.692 \pm 0.021 0.75 \pm 0.045
\cos(2\beta) 0.87 \pm 0.13 0.722 \pm 0.021 0.664 \pm 0.05
2\beta+\gamma [^{\circ}] -90 \pm 56 \text{ and } 94 \pm 52 113.2 \pm 3.3 113.4 \pm 3.3
\gamma [^{\circ}] 72.2 \pm 9.2 69.2 \pm 3.2 68.8 \pm 3.4
|\epsilon_{k}| 0.00222894 \pm 1.14971\times 10^{-5} 0.00222754 \pm 1.0978\times 10^{-5} -
B(B\rightarrow\tau\nu) 10^{-4} 0.99 \pm 0.25 0.837 \pm 0.076 0.822 \pm 0.077
J_{cp} 10^{-5} - 3.128 \pm 0.099 -
B(B_{s}\rightarrow ll), 10^{-9} - 3.44 \pm 0.26 -

The fit results for all the nine CKM elements are V_{CKM}=\left(\begin{array}{ccc} (0.97426 \pm 0.00014) & (0.22542 \pm 0.00063) & (0.00363 \pm 0.00012)e^{i(-69.1 \pm 3.1)^\circ}\\ ( -0.22527 \pm 0.00063)e^{i(0.0353 \pm 0.0011)^\circ} & (0.97339 \pm 0.00014) & (0.04196 \pm 0.0006) \\ (0.00885 \pm 0.00018)e^{i(-21.86 \pm 0.8)^\circ} & ( -0.04119 \pm 0.00061)e^{i(1.062 \pm 0.042)^\circ} & (0.999113 \pm 2.55\times 10^{-5})\end{array}\right)




Full fit result for \,\bar{\rho}
0.132 \pm 0.021
95% prob:[0.090, 0.174]
99% prob:[0.070, 0.196]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\bar{\eta}
0.348 \pm 0.015
95% prob:[0.320, 0.378]
99% prob:[0.311, 0.395]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\bar{\rho} - \bar{\eta}



EPS - PDF - PNG - JPG - GIF



Angles only result for \,\bar{\rho} - \bar{\eta}



EPS - PDF - PNG - JPG - GIF



Sides only result for \,\bar{\rho} - \bar{\eta}



EPS - PDF - PNG - JPG - GIF




Full fit result for \,\rho
0.136 \pm 0.022
95% prob:[0.092, 0.178]
99% prob:[0.071, 0.200]
EPS - PDF - PNG - JPG - GIF



Full fit result for \,\eta
0.358 \pm 0.014
95% prob:[0.331, 0.388]
99% prob:[0.319, 0.403]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,A
0.826 \pm 0.013
95% prob:[0.8, 0.852]
99% prob:[0.788, 0.866]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,\lambda
0.2254 \pm 0.0009
95% prob:[0.2236, 0.2272]
99% prob:[0.2226, 0.228]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\lambda
0.2254 \pm 0.0006
95% prob:[0.2242, 0.2267]
99% prob:[0.2235, 0.2273]
EPS - PDF - PNG - JPG - GIF




Full Fit result for \,|V_{ub}|
0.00363 \pm 0.00012
95% prob:[0.00339, 0.00389]
99% prob:[0.00328, 0.00403]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,|V_{ub}|
0.00363 \pm 0.00013
95% prob:[0.00337, 0.00388]
99% prob:[0.00326, 0.00403]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,|V_{ub}|



EPS - PDF - PNG - JPG - GIF




Fit Input for \,|V_{cb}|
0.041 \pm 0.001
95% prob:[0.03901, 0.043]
99% prob:[0.03802, 0.044]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,|V_{cb}|
0.04196 \pm 0.0006
95% prob:[0.04077, 0.04319]
99% prob:[0.04016, 0.04381]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\sin\theta_{12}
0.22545 \pm 0.00065
95% prob:[0.2242, 0.2267]
99% prob:[0.2236, 0.2274]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\sin\theta_{23}
0.04196 \pm 0.0006
95% prob:[0.04075, 0.04318]
99% prob:[0.04016, 0.04382]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\sin\theta_{13}
0.00363 \pm 0.00012
95% prob:[0.00339, 0.00389]
99% prob:[0.00328, 0.00403]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\delta [^{\circ}]
69.3 \pm 3.2
95% prob:[63.1, 75.7]
99% prob:[59.9, 78.9]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,m_{t}\mathrm{ [GeV/c^{2}]}
Gaussian likelihood used
164.1 \pm 0.9
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,m_{t}\mathrm{ [GeV/c^{2}]}
164.15 \pm 0.85
95% prob:[162., 165.]
99% prob:[161., 166.]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,m_{t}\mathrm{ [GeV/c^{2}]}
-
95% prob:0
99% prob:0
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,m_{t}\mathrm{ [GeV/c^{2}]}



EPS - PDF - PNG - JPG - GIF




Fit Input for \,\Delta m_{s} \mathrm{[ps^{-1}]}
Gaussian likelihood used
17.69 \pm 0.08
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\Delta m_{s} \mathrm{[ps^{-1}]}
17.685 \pm 0.075
95% prob:[17.53, 17.84]
99% prob:[17.45, 17.92]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,\Delta m_{s} \mathrm{[ps^{-1}]}
17.5 \pm 1.3
95% prob:[14.9, 20.2]
99% prob:[13.8, 21.7]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,\Delta m_{s} \mathrm{[ps^{-1}]}



EPS - PDF - PNG - JPG - GIF




Fit Input for \,f_{B_{s}}
Gaussian likelihood used
0.233 \pm 0.01
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,f_{B_{s}}
0.2285 \pm 0.0056
95% prob:[0.2176, 0.24]
99% prob:[0.2125, 0.2461]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,f_{B_{s}}
-
95% prob:0
99% prob:0
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,f_{B_{s}}



EPS - PDF - PNG - JPG - GIF




Fit Input for \,f_{B_{s}}/f_{B_{d}}
Gaussian likelihood used
1.2 \pm 0.02
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,f_{B_{s}}/f_{B_{d}}
1.204 \pm 0.018
95% prob:[1.168, 1.242]
99% prob:[1.149, 1.26]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,f_{B_{s}}/f_{B_{d}}
-
95% prob:0
99% prob:0
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,f_{B_{s}}/f_{B_{d}}



EPS - PDF - PNG - JPG - GIF




Fit Input for \,B_{B_{s}}/B_{B_{d}}
Gaussian likelihood used
1.05 \pm 0.07
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,B_{B_{s}}/B_{B_{d}}
1.091 \pm 0.051
95% prob:[0.991, 1.194]
99% prob:[0.942, 1.248]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,B_{B_{s}}/B_{B_{d}}
-
95% prob:0
99% prob:0
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,B_{B_{s}}/B_{B_{d}}



EPS - PDF - PNG - JPG - GIF




Fit Input for \,B_{B_{s}}
Gaussian likelihood used
0.87 \pm 0.04
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,B_{B_{s}}
0.857 \pm 0.035
95% prob:[0.786, 0.929]
99% prob:[0.751, 0.966]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,B_{B_{s}}
-
95% prob:0
99% prob:0
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,B_{B_{s}}



EPS - PDF - PNG - JPG - GIF




Fit Input for \,B_{k}
0.75 \pm 0.02
95% prob:[0.71, 0.79]
99% prob:[0.692, 0.81]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,B_{k}
0.757 \pm 0.019
95% prob:[0.719, 0.796]
99% prob:[0.7, 0.815]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,B_{k}
0.865 \pm 0.084
95% prob:[0.708, 1.047]
99% prob:[0.643, 1.159]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,B_{k}



EPS - PDF - PNG - JPG - GIF




Fit Input for \,\alpha [^{\circ}]
90.6 \pm 6.6
95% prob:[78.8, 103.] U [161., 169.]
99% prob:[73.2, 110.] U [157., 171.] U [179., 180]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\alpha [^{\circ}]
88.8 \pm 3.1
95% prob:[82.5, 94.8]
99% prob:[79.6, 98.1]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,\alpha [^{\circ}]
87.8 \pm 3.7
95% prob:[80.3, 95.3]
99% prob:[76.5, 98.9]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,\alpha [^{\circ}]



EPS - PDF - PNG - JPG - GIF




Full Fit result for \,\beta [^{\circ}]
21.93 \pm 0.86
95% prob:[20.3, 23.7]
99% prob:[19.5, 24.7]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,\beta [^{\circ}]
24.3 \pm 1.9
95% prob:[20.5, 28.2]
99% prob:[18.8, 30.3]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,\sin(2\beta)
0.68 \pm 0.023
95% prob:[0.635, 0.729]
99% prob:[0.613, 0.755]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\sin(2\beta)
0.692 \pm 0.021
95% prob:[0.652, 0.738]
99% prob:[0.632, 0.76]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,\sin(2\beta)
0.75 \pm 0.045
95% prob:[0.66, 0.836]
99% prob:[0.615, 0.874]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,\sin(2\beta)



EPS - PDF - PNG - JPG - GIF




Fit Input for \,\cos(2\beta)
0.87 \pm 0.13
95% prob:[0.44, 0.99]
99% prob:[0.12, 0.99]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\cos(2\beta)
0.722 \pm 0.021
95% prob:[0.676, 0.76]
99% prob:[0.651, 0.776]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,\cos(2\beta)
0.664 \pm 0.05
95% prob:[0.557, 0.757]
99% prob:[0.494, 0.794]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,\cos(2\beta)



EPS - PDF - PNG - JPG - GIF




Fit Input for \,2\beta+\gamma [^{\circ}]
-90 \pm 56 \text{ and } 94 \pm 52
95% prob:[-166, 166.]
99% prob:[-179, 179]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,2\beta+\gamma [^{\circ}]
113.2 \pm 3.3
95% prob:[106.8, 119.8]
99% prob:[103.4, 122.9]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,2\beta+\gamma [^{\circ}]
113.4 \pm 3.3
95% prob:[107, 120]
99% prob:[103.6, 123.1]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,2\beta+\gamma [^{\circ}]



EPS - PDF - PNG - JPG - GIF




Fit Input for \,\gamma [^{\circ}]
72.2 \pm 9.2
95% prob:[53.6, 89.7]
99% prob:[45, 97.4]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\gamma [^{\circ}]
69.2 \pm 3.2
95% prob:[63.1, 75.7]
99% prob:[59.9, 78.8]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,\gamma [^{\circ}]
68.8 \pm 3.4
95% prob:[62.3, 75.6]
99% prob:[59.1, 79]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,\gamma [^{\circ}]



EPS - PDF - PNG - JPG - GIF




Fit Input for \,|\epsilon_{k}|
0.00222894 \pm 1.14971\times 10^{-5}
95% prob:[0.00220545, 0.00225044]
99% prob:[0.00219545, 0.00225744]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,|\epsilon_{k}|
0.00222754 \pm 1.0978\times 10^{-5}
95% prob:[0.00220559, 0.0022495]
99% prob:[0.00219461, 0.00226048]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,B(B\rightarrow\tau
u) 10^{-4}
Gaussian likelihood used
0.99 \pm 0.25
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,B(B\rightarrow\tau
u) 10^{-4}
0.837 \pm 0.076
95% prob:[0.697, 1.001]
99% prob:[0.64, 1.095]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,B(B\rightarrow\tau
u) 10^{-4}
0.822 \pm 0.077
95% prob:[0.681, 0.991]
99% prob:[0.625, 1.094]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,B(B\rightarrow\tau
u) 10^{-4}



EPS - PDF - PNG - JPG - GIF




Full fit result for \,J_{cp} 10^{-5}
3.128 \pm 0.099
95% prob:[2.938, 3.331]
99% prob:[2.85, 3.439]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,B(B_{s}\rightarrow ll), 10^{-9}
3.44 \pm 0.26
95% prob:[2.93, 3.98]
99% prob:[2.71, 4.29]
EPS - PDF - PNG - JPG - GIF

In principle, the presence of New Physics might affect the result of the UT analysis, changing the functional dependencies of the experimental quantities upon ρ and η. On the contrary, two constraints now available, are almost unchanged by the presence of NP: |Vub/Vcb| from semileptonic B decays and the UT angle γ from B → D(*)K decays. As usual from this fit one can gets predictions for each observable related to the Unitarity Triangle. This set of values is the minimal requirement that each model describing New Physics has to satisfy in order to be taken as a realistic description of physics beyond the Standard Model.

Error: File attachment at http://utfit.org/foswiki/pub/UTfit/repository/CKM12Tree.txt, does not exist

The fit presented here is meant to constrain the NP contributions to |Δ F|=2 transitions by using the available experimental information on loop-mediated processes In general, NP models introduce a large number of new parameters: flavour changing couplings, short distance coefficients and matrix elements of new local operators. The specific list and the actual values of these parameters can only be determined within a given model. Nevertheless mixing processes are described by a single amplitude and can be parameterized, without loss of generality, in terms of two parameters, which quantify the difference of the complex amplitude with respect to the SM one. Thus, for instance, in the case of B^0_q-\bar{B}^0_q mixing we define
C_{B_q}  \, e^{2 i \phi_{B_q}} = \frac{\langle B^0_q|H_\mathrm{eff}^\mathrm{full}|\bar{B}^0_q\rangle} {\langle
              B^0_q|H_\mathrm{eff}^\mathrm{SM}|\bar{B}^0_q\rangle}\,, \qquad (q=d,s),
where H_\mathrm{eff}^\mathrm{SM} includes only the SM box diagrams, while H_\mathrm{eff}^\mathrm{full} also includes the NP contributions. In the absence of NP effects, C_{B_q}=1 and \phi_{B_q}=0 by definition. In a similar way, one can write
C_{\epsilon_K} = \frac{\mathrm{Im}[\langle
    K^0|H_{\mathrm{eff}}^{\mathrm{full}}|\bar{K}^0\rangle]}
  {\mathrm{Im}[\langle
    K^0|H_{\mathrm{eff}}^{\mathrm{SM}}|\bar{K}^0\rangle]}\,,\qquad
  C_{\Delta m_K} = \frac{\mathrm{Re}[\langle
    K^0|H_{\mathrm{eff}}^{\mathrm{full}}|\bar{K}^0\rangle]}
  {\mathrm{Re}[\langle
    K^0|H_{\mathrm{eff}}^{\mathrm{SM}}|\bar{K}^0\rangle]}\,.
  \label{eq:ceps}
Concerning \Delta m_K, to be conservative, we add to the short-distance contribution a possible long-distance one that varies with a uniform distribution between zero and the experimental value of \Delta m_K.

The experimental quantities determined from the B^0_q-\bar{B}^0_q mixings are related to their SM counterparts and the NP parameters by the following relations:

\Delta m_d^\mathrm{exp} = C_{B_d} \Delta m_d^\mathrm{SM} \,,\;    \\
\sin 2 \beta^\mathrm{exp} = \sin (2 \beta^\mathrm{SM} + 2\phi_{B_d})\,,\;   \\ 
\alpha^\mathrm{exp} =  \alpha^\mathrm{SM} - \phi_{B_d}\,,      \\
\Delta m_s^\mathrm{exp} = C_{B_s} \Delta m_s^\mathrm{SM} \,,\;   \\
\phi_s^\mathrm{exp} = (\beta_s^\mathrm{SM} - \phi_{B_s})\,,\;     \\
\Delta m_K^\mathrm{exp} = C_{\Delta m_K} \Delta m_K^\mathrm{SM} \,,\;   \\
\epsilon_K^\mathrm{exp} = C_{\epsilon_K} \epsilon_K^\mathrm{SM} \,,\;   \\

in a self-explanatory notation.

All the measured observables can be written as a function of these NP parameters and the SM ones ρ and η, and additional parameters such as masses, form factors, and decay constants.

Click on the parameter name to jump to the corresponding plot

Parameter Input value Full fit
\bar{\rho} - 0.142 \pm 0.05
\bar{\eta} - 0.393 \pm 0.058
\rho - 0.145 \pm 0.051
\eta - 0.403 \pm 0.059
A - 0.801 \pm 0.02
\lambda 0.2254 \pm 0.0009 0.2254 \pm 0.0006
C_{B_{d}} - 0.95 \pm 0.15
\phi_{B_{d}} [^{\circ}] - -3.5 \pm 3.7
C_{B_{s}} - 1.02 \pm 0.1
\phi_{B_{s}} [^{\circ}] - -1.3 \pm 2.2
C_{\epsilon_{K}} - 0.99 \pm 0.16
A_{SL_{d}} -0.0005 \pm 0.0056 -0.0047 \pm 0.002
A_{SL_{s}} -0.0051 \pm 0.0032 -0.00053 \pm 0.00068

The fit results for all the nine CKM elements are V_{CKM}=\left(\begin{array}{ccc} (0.97427 \pm 0.00014) & (0.22537 \pm 0.00063) & (0.00398 \pm 0.00055)e^{i(-70.0 \pm 6.7)^\circ}\\ ( -0.22522 \pm 0.00063)e^{i(0.0373 \pm 0.0048)^\circ} & (0.97345 \pm 0.00015) & (0.04072 \pm 0.00096) \\ (0.00864 \pm 0.00049)e^{i(-24.6 \pm 2.7)^\circ} & ( -0.03999 \pm 0.00095)e^{i(1.19 \pm 0.11)^\circ} & (0.999163 \pm 3.9\times 10^{-5})\end{array}\right)




Full fit result for \,\bar{\rho}
0.142 \pm 0.05
95% prob:[0.057, 0.246]
99% prob:[0.028, 0.301]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\bar{\eta}
0.393 \pm 0.058
95% prob:[0.278, 0.510]
99% prob:[0.222, 0.572]
EPS - PDF - PNG - JPG - GIF



Full fit result for \,\bar{\rho} - \bar{\eta}



EPS - PDF - PNG - JPG - GIF




Full fit result for \,\rho
0.145 \pm 0.051
95% prob:[0.058, 0.252]
99% prob:[0.029, 0.309]
EPS - PDF - PNG - JPG - GIF



Full fit result for \,\eta
0.403 \pm 0.059
95% prob:[0.285, 0.524]
99% prob:[0.228, 0.587]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,A
0.801 \pm 0.02
95% prob:[0.763, 0.841]
99% prob:[0.743, 0.861]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,\lambda
0.2254 \pm 0.0009
95% prob:[0.2235, 0.2271]
99% prob:[0.2226, 0.228]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\lambda
0.2254 \pm 0.0006
95% prob:[0.2241, 0.2266]
99% prob:[0.2235, 0.2273]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,C_{B_{d}}
0.95 \pm 0.15
95% prob:[0.69, 1.29]
99% prob:[0.59, 1.53]
EPS - PDF - PNG - JPG - GIF



Full fit result for \,\phi_{B_{d}} [^{\circ}]
-3.5 \pm 3.7
95% prob:[-10, 3.9]
99% prob:[-14, 7.6]
EPS - PDF - PNG - JPG - GIF



correlations for \,\Phi_{B_{d}} - C_{B_{d}}



EPS - PDF - PNG - JPG - GIF




Full fit result for \,C_{B_{s}}
1.02 \pm 0.1
95% prob:[0.83, 1.24]
99% prob:[0.75, 1.37]
EPS - PDF - PNG - JPG - GIF



Full fit result for \,\phi_{B_{s}} [^{\circ}]
-1.3 \pm 2.2
95% prob:[-6., 3.2]
99% prob:[-8., 6.0]
EPS - PDF - PNG - JPG - GIF



correlations for \,\Phi_{B_{s}} - C_{B_{s}}



EPS - PDF - PNG - JPG - GIF




Full fit result for \,C_{\epsilon_{K}}
0.99 \pm 0.16
95% prob:[0.70, 1.38]
99% prob:[0.61, 1.69]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,A_{SL_{d}}
Gaussian likelihood used
-0.0005 \pm 0.0056
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,A_{SL_{d}}
-0.0047 \pm 0.002
95% prob:[-0.0083, -0.0003]
99% prob:[-0.0102, 0.00159]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,A_{SL_{s}}
Gaussian likelihood used
-0.0051 \pm 0.0032
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,A_{SL_{s}}
-0.00053 \pm 0.00068
95% prob:[-0.0019, 0.00081]
99% prob:[-0.0026, 0.00153]
EPS - PDF - PNG - JPG - GIF

 
  Powered by
Foswiki
Ideas, requests, problems regarding this web site? Send feedback