
| Parameter | Input value | Full fit | SM Prediction |
|---|---|---|---|
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Parameter | Input value | Full fit | SM Prediction |
|---|---|---|---|
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |

|
|
|
|
|
|
|
|
| Parameter | Input value | Full fit | SM Prediction |
|---|---|---|---|
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |

|
|
|
|
|
|
|
|
| Parameter | Input value | Full fit |
|---|---|---|
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |

|
Full fit result for ![]() |
|---|
![]() |
![]() 95% prob:[-0.46, -0.26] U [0.27, 0.469] 99% prob:[-0.52, -0.22] U [0.223, 0.522] |
| EPS - PDF - PNG - JPG - GIF |
|
|
|
|
|
|
|
|
|
|
| Parameter | Input value | Full fit |
|---|---|---|
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |

|
Full fit result for ![]() |
|---|
![]() |
![]() 95% prob:[0.308, 0.374] 99% prob:[0.290, 0.396] |
| EPS - PDF - PNG - JPG - GIF |
|
|
|
|
|
|
|
|
|
|
|
|
|
| Parameter | Full fit |
|---|---|
| ![]() |
| ![]() |
| ![]() |
| ![]() |
| ![]() |
| ![]() |
| ![]() |
| ![]() |
| ![]() |
| ![]() |
| ![]() |
| ![]() |
| ![]() |
| ![]() |
| ![]() |
| ![]() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

includes only the SM box diagrams, while
also includes the NP contributions. In the absence of NP effects,
and
by definition. In a similar way, one can write ![C_{\epsilon_K} = \frac{\mathrm{Im}[\langle
K^0|H_{\mathrm{eff}}^{\mathrm{full}}|\bar{K}^0\rangle]}
{\mathrm{Im}[\langle
K^0|H_{\mathrm{eff}}^{\mathrm{SM}}|\bar{K}^0\rangle]}\,,\qquad
C_{\Delta m_K} = \frac{\mathrm{Re}[\langle
K^0|H_{\mathrm{eff}}^{\mathrm{full}}|\bar{K}^0\rangle]}
{\mathrm{Re}[\langle
K^0|H_{\mathrm{eff}}^{\mathrm{SM}}|\bar{K}^0\rangle]}\,.
\label{eq:ceps}](/foswiki/pub/UTfit/ResultsSummer2013PostEPS/_MathModePlugin_67ab6a9a7b559aa5224ab6e8d6c0ecab.png)
, to be conservative, we add to the short-distance contribution a possible long-distance one that varies with a uniform distribution between zero and the experimental value of
. The experimental quantities determined from the
mixings are related to their SM counterparts and the NP parameters by the following relations: 
| Parameter | Input value | Full fit |
|---|---|---|
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |

|
Full fit result for ![]() |
|---|
![]() |
![]() 95% prob:[0.272, 0.466] 99% prob:[0.220, 0.525] |
| EPS - PDF - PNG - JPG - GIF |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mixing we define 
includes only the SM box diagrams, while
also includes the NP contributions. In the absence of NP effects,
and
by definition. In a similar way, one can write ![C_{\epsilon_K} = \frac{\mathrm{Im}[\langle
K^0|H_{\mathrm{eff}}^{\mathrm{full}}|\bar{K}^0\rangle]}
{\mathrm{Im}[\langle
K^0|H_{\mathrm{eff}}^{\mathrm{SM}}|\bar{K}^0\rangle]}\,,\qquad
C_{\Delta m_K} = \frac{\mathrm{Re}[\langle
K^0|H_{\mathrm{eff}}^{\mathrm{full}}|\bar{K}^0\rangle]}
{\mathrm{Re}[\langle
K^0|H_{\mathrm{eff}}^{\mathrm{SM}}|\bar{K}^0\rangle]}\,.
\label{eq:ceps}](/foswiki/pub/UTfit/ResultsSummer2013PostEPS/_MathModePlugin_67ab6a9a7b559aa5224ab6e8d6c0ecab.png)
, to be conservative, we add to the short-distance contribution a possible long-distance one that varies with a uniform distribution between zero and the experimental value of
. The experimental quantities determined from the
mixings are related to their SM counterparts and the NP parameters by the following relations: 
| Parameter | Input value | Full fit |
|---|---|---|
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |
| ![]() | ![]() |

|
Full fit result for ![]() |
|---|
![]() |
![]() 95% prob:[0.272, 0.466] 99% prob:[0.220, 0.525] |
| EPS - PDF - PNG - JPG - GIF |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ideas, requests, problems regarding this web site? Send feedback