
| Line: 1 to 1 | ||||||||
|---|---|---|---|---|---|---|---|---|
| ||||||||
| Changed: | ||||||||
| < < |
Indirect CP violation in the Kaon system is usually expressed in terms of parameter which is the fraction of CP violating component in the mass eigenstates and which is usually defined as: | |||||||
| > > |
Indirect CP violation in the Kaon system is usually expressed in terms of parameter which is the fraction of the CP violating component in the mass eigenstates and which is usually defined as: | |||||||
| ||||||||
| Line: 14 to 14 | ||||||||
|
Top and charm quarks contribute to the expression of the mixing in K0-K0 system. The calculation of the box diagram gives
| ||||||||
| Changed: | ||||||||
| < < |
M_{12} = \frac{G_F^2}{12\pi^2} F_K^2 B_K M_K M_W^2 \left [ \lambda_c^{*2} \eta_t S_0 (x_c) + \lambda_t^{*2} \eta_2 S_0 (x_t)+2\lambda_t^* \lambda_c^* \eta_3 S(x_c,~x_t) \right ] with | |||||||
| > > |
M_{12} = \frac{G_F^2}{12\pi^2} F_K^2 B_K M_K M_W^2 \left [ \lambda_c^{*2} \eta_t S_0 (x_c) + \lambda_t^{*2} \eta_2 S_0 (x_t)+2\lambda_t^* \lambda_c^* \eta_3 S(x_c,~x_t) \right ] where | |||||||
| which allows one to write | ||||||||
| Line: 26 to 26 | ||||||||
| C_\epsilon = \frac{G_F^2 F_K^2 M_K M_W^2}{6\sqrt{2}\pi^2 \Delta M_K } = 3.84 \cdot 10^4. | ||||||||
| Changed: | ||||||||
| < < |
The expression actually used in the UT fit is obtained writing in terms of and the other elements of CKM matrix: | |||||||
| > > |
The expression actually used in the UT fit is obtained by writing in terms of and the other elements of CKM matrix: | |||||||
| ||||||||
| Line: 38 to 38 | ||||||||
| ||||||||
| Changed: | ||||||||
| < < |
![]() EPS - PDF - PNG - JPG - GIF | |||||||
| > > |
![]() EPS - PDF - PNG - JPG - GIF | |||||||
| Line: 1 to 1 | ||||||||
|---|---|---|---|---|---|---|---|---|
| ||||||||
| Line: 34 to 34 | ||||||||
|
| ||||||||
| Changed: | ||||||||
| < < |
![]() [EPS format] [JPG format] | |||||||
| > > |
<--
![]() EPS - PDF - PNG - JPG - GIF | |||||||
| Line: 1 to 1 | ||||||||
|---|---|---|---|---|---|---|---|---|
| ||||||||
| Line: 14 to 14 | ||||||||
|
Top and charm quarks contribute to the expression of the mixing in K0-K0 system. The calculation of the box diagram gives
| ||||||||
| Changed: | ||||||||
| < < |
M_{12} = \frac{G_F^2}{12\pi^2} F_K^2 B_K M_K M_W^2 \left [ \lambda_c^{*2} \eta_t S_0 (x_c) + \lambda_t^{*2} \eta_2 S_0 (x_t)+2\lambda_t^* \lambda_c^* \eta_3 S(x_c,~x_t) \right ]
with
| |||||||
| > > |
M_{12} = \frac{G_F^2}{12\pi^2} F_K^2 B_K M_K M_W^2 \left [ \lambda_c^{*2} \eta_t S_0 (x_c) + \lambda_t^{*2} \eta_2 S_0 (x_t)+2\lambda_t^* \lambda_c^* \eta_3 S(x_c,~x_t) \right ] with | |||||||
| which allows one to write | ||||||||
| Line: 25 to 23 | ||||||||
|
where
| ||||||||
| Changed: | ||||||||
| < < | C_\epsilon = \frac{G_F^2 F_K^2 M_K M_W^2}{6\sqrt{2} \Delta M_K } = 3.78 \cdot 10^4. | |||||||
| > > | C_\epsilon = \frac{G_F^2 F_K^2 M_K M_W^2}{6\sqrt{2}\pi^2 \Delta M_K } = 3.84 \cdot 10^4. | |||||||
The expression actually used in the UT fit is obtained writing in terms of and the other elements of CKM matrix: | ||||||||
| Line: 36 to 34 | ||||||||
|
| ||||||||
| Changed: | ||||||||
| < < |
![]() [EPS format] [JPG format] | |||||||
| > > |
![]() [EPS format] [JPG format] | |||||||
| Line: 1 to 1 | ||||||||
|---|---|---|---|---|---|---|---|---|
| Changed: | ||||||||
| < < | -- VincenzoVagnoni - 01 Apr 2010 | |||||||
| > > |
Indirect CP violation in the Kaon system is usually expressed in terms of | |||||||
Ideas, requests, problems regarding this web site? Send feedback