Line: 1 to 1 | ||||||||
---|---|---|---|---|---|---|---|---|
| ||||||||
Changed: | ||||||||
< < |
Indirect CP violation in the Kaon system is usually expressed in terms of ![]() | |||||||
> > |
Indirect CP violation in the Kaon system is usually expressed in terms of ![]() | |||||||
![]() | ||||||||
Line: 14 to 14 | ||||||||
Top and charm quarks contribute to the expression of the mixing in K0-K0 system. The calculation of the box diagram gives
| ||||||||
Changed: | ||||||||
< < |
M_{12} = \frac{G_F^2}{12\pi^2} F_K^2 B_K M_K M_W^2 \left [ \lambda_c^{*2} \eta_t S_0 (x_c) + \lambda_t^{*2} \eta_2 S_0 (x_t)+2\lambda_t^* \lambda_c^* \eta_3 S(x_c,~x_t) \right ] with ![]() | |||||||
> > |
M_{12} = \frac{G_F^2}{12\pi^2} F_K^2 B_K M_K M_W^2 \left [ \lambda_c^{*2} \eta_t S_0 (x_c) + \lambda_t^{*2} \eta_2 S_0 (x_t)+2\lambda_t^* \lambda_c^* \eta_3 S(x_c,~x_t) \right ] where ![]() | |||||||
which allows one to write | ||||||||
Line: 26 to 26 | ||||||||
C_\epsilon = \frac{G_F^2 F_K^2 M_K M_W^2}{6\sqrt{2}\pi^2 \Delta M_K } = 3.84 \cdot 10^4. | ||||||||
Changed: | ||||||||
< < |
The expression actually used in the UT fit is obtained writing ![]() ![]() | |||||||
> > |
The expression actually used in the UT fit is obtained by writing ![]() ![]() | |||||||
![]() | ||||||||
Line: 38 to 38 | ||||||||
| ||||||||
Changed: | ||||||||
< < |
![]() EPS - PDF - PNG - JPG - GIF | |||||||
> > |
![]() EPS - PDF - PNG - JPG - GIF | |||||||
Line: 1 to 1 | ||||||||
---|---|---|---|---|---|---|---|---|
| ||||||||
Line: 34 to 34 | ||||||||
| ||||||||
Changed: | ||||||||
< < |
![]() [EPS format] [JPG format] | |||||||
> > |
<--
![]() EPS - PDF - PNG - JPG - GIF | |||||||
Line: 1 to 1 | ||||||||
---|---|---|---|---|---|---|---|---|
| ||||||||
Line: 14 to 14 | ||||||||
Top and charm quarks contribute to the expression of the mixing in K0-K0 system. The calculation of the box diagram gives
| ||||||||
Changed: | ||||||||
< < |
M_{12} = \frac{G_F^2}{12\pi^2} F_K^2 B_K M_K M_W^2 \left [ \lambda_c^{*2} \eta_t S_0 (x_c) + \lambda_t^{*2} \eta_2 S_0 (x_t)+2\lambda_t^* \lambda_c^* \eta_3 S(x_c,~x_t) \right ]
with
![]() | |||||||
> > |
M_{12} = \frac{G_F^2}{12\pi^2} F_K^2 B_K M_K M_W^2 \left [ \lambda_c^{*2} \eta_t S_0 (x_c) + \lambda_t^{*2} \eta_2 S_0 (x_t)+2\lambda_t^* \lambda_c^* \eta_3 S(x_c,~x_t) \right ] with ![]() | |||||||
which allows one to write | ||||||||
Line: 25 to 23 | ||||||||
where
| ||||||||
Changed: | ||||||||
< < | C_\epsilon = \frac{G_F^2 F_K^2 M_K M_W^2}{6\sqrt{2} \Delta M_K } = 3.78 \cdot 10^4. | |||||||
> > | C_\epsilon = \frac{G_F^2 F_K^2 M_K M_W^2}{6\sqrt{2}\pi^2 \Delta M_K } = 3.84 \cdot 10^4. | |||||||
The expression actually used in the UT fit is obtained writing ![]() ![]() | ||||||||
Line: 36 to 34 | ||||||||
| ||||||||
Changed: | ||||||||
< < |
![]() [EPS format] [JPG format] | |||||||
> > |
![]() [EPS format] [JPG format] | |||||||
Line: 1 to 1 | ||||||||
---|---|---|---|---|---|---|---|---|
Changed: | ||||||||
< < | -- VincenzoVagnoni - 01 Apr 2010 | |||||||
> > |
Indirect CP violation in the Kaon system is usually expressed in terms of |