UTfit page of D-Dbar mixing
Under construction
\begin{table}[htb]
\centering
\begin{tabular}{|ccccccc|}
\hline
Observable & Value & \multicolumn{4}{c}{Correlation Coeff.} &
Reference \\ \hline
$y_{CP}$ & $(1.064 \pm 0.208)\%$ & & & & & \cite{hep-ex/0004034, hep-ex/0111024, hep-ex/0111026,
hep-ex/0703036, 0712.2249, 0908.0761, 0905.4185, Aaij:2011ad} \\ \hline
$A_\Gamma$ & $(0.026 \pm 0.231)\%$ & & & & & \cite{hep-ex/9903012,
hep-ex/0703036, 0712.2249, Aaij:2011ad} \\ \hline
$x$ & $(0.811 \pm 0.334)\%$ & 1 & -0.007 & -0.255$\alpha$ &
0.216 & \cite{0704.1000} \ $y$ & $(0.309 \pm 0.281)\%$ & -0.007 & 1 & -0.019$\alpha$ &
-0.280 & \cite{0704.1000} \ $\vert q/p \vert$ & $(0.95 \pm 0.22 \pm 0.10)\%$ & -0.255$\alpha$
& -0.019$\alpha$ & 1 &
-0.128 $\alpha$ & \cite{0704.1000} \ $\phi$ & $(-0.035 \pm 0.19 \pm 0.09)$ & 0.216
& -0.280 &
-0.128 $\alpha$ & 1 & \cite{0704.1000} \\\hline
$x$ & $(0.16 \pm 0.23 \pm 0.12 \pm 0.08)\%$ & 1 & 0.0615 & & & \cite{1004.5053} \ $y$ & $(0.57 \pm 0.20 \pm 0.13 \pm 0.07)\%$ & 0.0615 & 1 & & & \cite{1004.5053} \ \hline
$R_M$ & $(0.0130 \pm 0.0269)\%$ & & & & & \cite{hep-ex/9606016,
hep-ex/0502012, hep-ex/0408066, 0705.0704, 0802.2952} \\\hline
$(x^\prime_+)_{K\pi\pi}$ & $(2.48 \pm 0.59 \pm 0.39)\%$ & 1 & -0.69 & & &
\cite{0807.4544} \ $(y^\prime_+)_{K\pi\pi}$ & $(-0.07 \pm 0.65 \pm 0.50)\%$ & -0.69 &
1 & & &
\cite{0807.4544} \ $(x^\prime_-)_{K\pi\pi}$ & $(3.50 \pm 0.78 \pm 0.65)\%$ & 1 & -0.66 & & &
\cite{0807.4544} \ $(y^\prime_-)_{K\pi\pi}$ & $(-0.82 \pm 0.68 \pm 0.41)\%$ & -0.66 &
1 & & &
\cite{0807.4544} \\ \hline
$R_D$ & $(0.3030 \pm 0.0189)\%$ & 1 & 0.77 & -0.87 & &
\cite{hep-ex/0703020} \ $(x^\prime_+)^2$ & $(-0.024 \pm 0.052)\%$ & 0.77 & 1 & -0.94 & &
\cite{hep-ex/0703020} \ $y^\prime_+$ & $(0.98 \pm 0.78)\%$ & -0.87 & -0.94 & 1 & &
\cite{hep-ex/0703020} \\\hline
$A_D$ & $(-2.1 \pm 5.4)\%$ & 1 & 0.77 & -0.87 & &
\cite{hep-ex/0703020} \ $(x^\prime_-)^2$ & $(-0.020 \pm 0.050)\%$ & 0.77 & 1 & -0.94 & &
\cite{hep-ex/0703020} \ $y^\prime_-$ & $(0.96 \pm 0.75)\%$ & -0.87 & -0.94 & 1 & &
\cite{hep-ex/0703020} \\\hline
$R_D$ & $(0.364 \pm 0.018)\%$ & 1 & 0.655 & -0.834 & &
\cite{hep-ex/0601029} \ $(x^\prime_+)^2$ & $(0.032 \pm 0.037)\%$ & 0.655 & 1 & -0.909 & &
\cite{hep-ex/0601029} \ $y^\prime_+$ & $(-0.12 \pm 0.58)\%$ & -0.834 & -0.909 & 1 & &
\cite{hep-ex/0601029} \\\hline
$A_D$ & $(2.3 \pm 4.7)\%$ & 1 & 0.655 & -0.834 & &
\cite{hep-ex/0601029} \ $(x^\prime_-)^2$ & $(0.006 \pm 0.034)\%$ & 0.655 & 1 & -0.909 & &
\cite{hep-ex/0601029} \ $y^\prime_-$ & $(0.20 \pm 0.54)\%$ & -0.834 & -0.909 & 1 & &
\cite{hep-ex/0601029} \\\hline
\end{tabular}
\caption{Experimental data used in the analysis of $D$ mixing, from
ref.~\cite{[{}][{and online updates at
\url{http://www.slac.stanford.edu/xorg/hfag/}}]1010.1589}. $\alpha
= (1 + \vert q/p \vert)^2/2$. Asymmetric errors have been
symmetrized. We do not use measurements that do not allow for CP
violation in mixing, except for ref.~\cite{1004.5053}.\footnote{As
shown in ref.~\cite{0704.1000}, the results for $x$ and $y$ from
the Dalitz analysis of $D \to K_s \pi \pi$ are not sensitive to
the assumptions about CP violation in mixing.}}
\label{tab:dmixexp}
\end{table}
We perform a fit to the experimental data in Table~\ref{tab:dmixexp}.
We assume that all relevant decay amplitudes in the phase convention
$\mathrm{CP}\vert D\rangle = \vert \bar D \rangle$ and
$\mathrm{CP}\vert f\rangle = \eta_{\mathrm{CP}}^f \vert \bar f
\rangle$ satisfy the relation $\mathcal{A}(D \to f) =
\eta_{\mathrm{CP}}^f\mathcal{A}(\bar D \to \bar f)$, which is expected
to hold in the SM (in the standard CKM phase convention) with an
accuracy much better than present experimental errors. In the same
approximation this implies $\Gamma_{12}$ real. We assume flat priors
for $x = \Delta m_D/\Gamma_D$, $y = \Delta \Gamma_D/(2 \Gamma_D)$ and
$\vert q/p\vert$, with $\vert D_{H,L} \rangle = p \vert D^0 \rangle
\pm q \vert \bar D^0 \rangle$ and $\vert p \vert^2+\vert q \vert^2 =
1$. We can then express all observables in terms of $x$, $y$ and
$\vert q/p\vert$ using the following formul{\ae}~\cite{Branco:1999fs,
hep-ph/0205113, hep-ph/0703204, 0907.3917, 0904.0305}:
\begin{eqnarray}
\label{eq:xyandco}
&&\delta = \frac{1 - \vert q/p \vert^2}{1+\vert q/p
\vert^2} \,,\quad \phi = \arg(q/p) = \arg (y+i \delta x)\,,\quad
A_M = \frac{\vert q/p \vert^4 -1}{\vert q/p
\vert^4+1}\quad
R_M =\frac{x^2+y^2}{2}\,, \ &&
\left(
\begin{array}{c}
x^\prime \ y^\prime
\end{array}
\right) =
\left(
\begin{array}{cc}
\cos \delta_{K\pi} & \sin \delta_{K\pi} \ -\sin \delta_{K\pi} & \cos \delta_{K\pi}
\end{array}
\right) \left(
\begin{array}{c}
x \ y
\end{array}
\right)
\,,\quad
x^{\prime}_\pm = \left\vert
\frac{q}{p}
\right\vert^{\pm}(x^\prime\cos \phi \pm y^\prime \sin
\phi)\,, \quad
y^\prime_\pm =
\left\vert
\frac{q}{p}
\right\vert^{\pm 1}(y^\prime\cos \phi \mp x^\prime \sin
\phi)\,,\nonumber \\
&& y_\mathrm{CP} =
\left(
\left\vert
\frac{q}{p}
\right\vert + \left\vert
\frac{p}{q}
\right\vert
\right) \frac{y}{2} \cos \phi- \left(
\left\vert
\frac{q}{p}
\right\vert - \left\vert
\frac{p}{q}
\right\vert
\right) \frac{x}{2}\sin \phi\,,\quad A_\Gamma = \left(
\left\vert
\frac{q}{p}
\right\vert - \left\vert
\frac{p}{q}
\right\vert
\right) \frac{y}{2} \cos \phi- \left(
\left\vert
\frac{q}{p}
\right\vert + \left\vert
\frac{p}{q}
\right\vert
\right) \frac{x}{2}\sin \phi\,, \nonumber
% \% && R_D = \frac{\Gamma(D^0 \to K^+\pi^-)+\Gamma(\bar D^0 \to
% K^-\pi^+)}{\Gamma(D^0 \to K^-\pi^+)+\Gamma(\bar D^0 \to
% K^+\pi^-)}\,,
% \quad A_{D} = \frac{\Gamma(D^0 \to K^+\pi^-)-\Gamma(\bar D^0 \to
% K^-\pi^+)}{\Gamma(D^0 \to K^+\pi^-)+\Gamma(\bar D^0 \to K^-\pi^+)} \,,\nonumber
\end{eqnarray}
with $\delta_{K\pi}$ a strong phase.
For the purpose of constraining NP, it is useful to express the fit
results in terms of the $\Delta D=2$ effective Hamiltonian matrix
elements $M_{12}$ and $\Gamma_{12}$:
\begin{equation}
\vert M_{12} \vert = \frac{1}{\tau_D } \sqrt{\frac{x^2+\delta^2
y^2}{4(1-\delta^2)}}\,,\quad
\vert \Gamma_{12} \vert= \frac{1}{\tau_D }\sqrt{\frac{y^2+\delta^2
x^2}{1-\delta^2}}\,, \quad
\sin \Phi_{12} = \frac{\vert \Gamma_{12}\vert^2 + 4 \vert
M_{12}\vert^2 - (x^2+y^2)\vert q/p\vert^2/\tau_D^2}{4 \vert M_{12}
\Gamma_{12}\vert}\,,
\label{eq:m12g12}
\end{equation}
with $\Phi_{12}=\arg \Gamma_{12}/M_{12}$. Consistently with the
assumption $\mathcal{A}(D \to f) = \mathcal{A}(\bar D \to \bar f)$,
$\Gamma_{12}$ can be taken real with negligible NP contributions, and
a nonvanishing $\Phi_{12}$ can be interpreted as a signal of new
sources of CP violation in $M_{12}$. For the sake of completeness, we
report here also the formul\ae to compute the observables $x$, $y$ and
$\delta$ from $M_{12}$ and $\Gamma_{12}$:
\begin{eqnarray}
\sqrt{2}\, \Delta m &=& \sqrt{4 \vert M_{12} \vert^2 - \vert
\Gamma_{12} \vert^2 + \sqrt{(4\vert M_{12} \vert^2+ \vert
\Gamma_{12} \vert^2)^2-16 \vert M_{12} \vert^2 \vert
\Gamma_{12} \vert^2 \sin^2\Phi_{12}} }\,,\nonumber \ \sqrt{2}\, \Delta \Gamma&=& \mathrm{sign}(\cos\Phi_{12}) \sqrt{\vert \Gamma_{12} \vert^2 - 4\vert
M_{12} \vert^2 + \sqrt{(4\vert M_{12} \vert^2+ \vert
\Gamma_{12} \vert^2)^2-16 \vert M_{12} \vert^2 \vert
\Gamma_{12} \vert^2 \sin^2\Phi_{12}} }\,,\nonumber \ \delta &=&\frac{ 2 \vert M_{12} \vert \vert
\Gamma_{12} \vert \sin\Phi_{12}}{(\Delta m)^2 + \vert
\Gamma_{12}\vert^2} \,,
\label{eq:m12g12inv}
\end{eqnarray}
in agreement with \cite{0907.3917} up to a factor of $\sqrt{2}$.
\begin{table}[t]
\centering
\begin{tabular}{|ccc|}
\hline
parameter & result @ $68\%$ prob. & $95\%$ prob. range \ \hline
$\vert M_{12}\vert$ [1/ps] & $(6.5 \pm 2.3) \cdot 10^{-3}$ & $[2.0,11.0]
\cdot 10^{-3}$ \ $\vert G_{12}\vert$ [1/ps] & $(19.7 \pm 3.2) \cdot 10^{-3}$ & $[13.3,26.1]
\cdot 10^{-3}$ \ $\Phi_{12}$ [$^\circ$] & $(-12 \pm 15)$ &
$[-52,17]$ \ \hline
$x$ & $(5.2 \pm 2.0) \cdot 10^{-3}$ & $[1.1,9.1] \cdot 10^{-3}$ \ $y$ & $(8.0 \pm 1.3) \cdot 10^{-3}$ & $[5.3,10.6] \cdot 10^{-3}$ \ $\vert q/p \vert -1$ & $(9 \pm 12) \cdot 10^{-2}$ & $[-11,39] \cdot 10^{-2}$ \ $\phi$ [$^\circ$] & $(-3.0 \pm 3.7)$ &
$[-12.6,4.4]$ \ \hline
\end{tabular}
\caption{Results of the fit to $D$ mixing data.}
\label{tab:ddmix_res}
\end{table}
\begin{figure}[htb]
\centering
\includegraphics[width=.3\textwidth]{figs/ddmix_new_M12}
\includegraphics[width=.3\textwidth]{figs/ddmix_new_G12}
\includegraphics[width=.3\textwidth]{figs/ddmix_new_phi12}
\caption{One-dimensional p.d.f. for the parameters $\vert M_{12}
\vert$, $\vert \Gamma_{12}
\vert$ and $\Phi_{12}$.}
\label{fig:ddmix_1d}
\end{figure}
\begin{figure}[htb]
\centering
\includegraphics[width=.4\textwidth]{figs/ddmix_new_x}
\includegraphics[width=.4\textwidth]{figs/ddmix_new_y}
\includegraphics[width=.4\textwidth]{figs/ddmix_new_qopm1}
\includegraphics[width=.4\textwidth]{figs/ddmix_new_phizoom}
\caption{One-dimensional p.d.f. for the parameters $x$, $y$, $\vert
q/p \vert -1$ and $\phi$.}
\label{fig:ddmix_1d_2}
\end{figure}
\begin{figure}[htb]
\centering
\includegraphics[width=.4\textwidth]{figs/G12vsM12}
\includegraphics[width=.4\textwidth]{figs/Phi12vsM12}
\includegraphics[width=.4\textwidth]{figs/yvsx}
\includegraphics[width=.4\textwidth]{figs/phivsqopm1}
\caption{Two-dimensional p.d.f. for $\vert \Gamma_{12} \vert$ vs
$\vert M_{12} \vert$ (top left), $\Phi_{12}$ vs
$\vert M_{12} \vert$ (top right), $y$ vs $x$ (bottom left) and
$\phi$ vs $\vert q/p \vert -1$ (bottom right).}
\label{fig:ddmix_2d}
\end{figure}
The results of the fit are reported in Table \ref{tab:ddmix_res}. The
corresponding p.d.f are shown in Figs. \ref{fig:ddmix_1d} and
\ref{fig:ddmix_1d_2}. Some two-dimensional correlations are displayed
in Fig. \ref{fig:ddmix_2d}.
% \section{Standard Model Analysis}
% \subsection{Fit Results}
% \subsection{Predictions And Compatibility}
% \subsection{DISCUSSION OF VARIOUS ISSUES}
% \section{New Physics Analysis}
% \subsection{Fit Results}
% \subsection{Predictions And Compatibility}
% \subsection{DISCUSSION OF VARIOUS ISSUES}
% \section{Effective Field Theory Analysis}
% \subsection{Fit Results}
% \subsection{Constraints On The New Physics Scale}
% \section{Conclusions And Outlook}
%\bibliographystyle{unsrt}
\bibliography{hepbiblio}