Gamma Combination from the UTfit goup

We use the relevant post-ICHEP 2012 HFAG averages as inputs.

The results of combination:

Parameter Full fit
\gamma [^{\circ}] -107.7 \pm 9.4 \text{ and } 72.6 \pm 9.4
\delta_{B}(DK) [^{\circ}] -63 \pm 11 \text{ and } 117 \pm 11
r_{B}(DK) 0.1011 \pm 0.0078
\delta_{B}(DK^{*}) [^{\circ}] -90.55 \pm 0.75 \text{ and } -54.5 \pm 34.6 \text{ and } 125.75 \pm 34.35
r_{B}(DK^{*}) 0.123 \pm 0.057
\delta_{B}(D^{*}K) [^{\circ}] -51 \pm 14 \text{ and } 128 \pm 14
r_{B}(D^{*}K) 0.117 \pm 0.019
\delta_{B0}(DK^{0}) [^{\circ}] -57 \pm 48 \text{ and } 78 \pm 2 \text{ and } 126 \pm 43
r_{B0}(DK^{0}) 0.256 \pm 0.059




Full fit result for \,\gamma [^{\circ}]
-107.7 \pm 9.4 \text{ and } 72.6 \pm 9.4
95% prob:[-126, -90.] U [53.4, 89.8]
99% prob:[-135, -82.] U [44.9, 97.4]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\delta_{B}(DK) [^{\circ}]
-63 \pm 11 \text{ and } 117 \pm 11
95% prob:[-85.9, -44.3] U [94.4, 136.1]
99% prob:[-96.1, -36.4] U [83.9, 143.5]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,r_{B}(DK)
0.1011 \pm 0.0078
95% prob:[0.086, 0.1161]
99% prob:[0.0783, 0.1238]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\delta_{B}(DK^{*}) [^{\circ}]
-90.55 \pm 0.75 \text{ and } -54.5 \pm 34.6 \text{ and } 125.75 \pm 34.35
95% prob:[-180, -177.] U [-144., 2.5] U [35.4, 180]
99% prob:[-180, -165.] U [-161., 180]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,r_{B}(DK^{*})
0.123 \pm 0.057
95% prob:[0, 0.21]
99% prob:[0, 0.263]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\delta_{B}(D^{*}K) [^{\circ}]
-51 \pm 14 \text{ and } 128 \pm 14
95% prob:[-83, -25.6] U [96.6, 154.4]
99% prob:[-106., -13.9] U [72.7, 166.2]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,r_{B}(D^{*}K)
0.117 \pm 0.019
95% prob:[0.076, 0.152]
99% prob:[0.051, 0.168]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\delta_{B0}(DK^{0}) [^{\circ}]
-57 \pm 48 \text{ and } 78 \pm 2 \text{ and } 126 \pm 43
95% prob:[-180, -162.] U [-155., 8.6] U [28.5, 177.2]
99% prob:[-180, 18.5] U [18.6, 178.1]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,r_{B0}(DK^{0})
0.256 \pm 0.059
95% prob:[0.12, 0.369]
99% prob:[0.011, 0.406]
EPS - PDF - PNG - JPG - GIF

The predictions of the observables coming from the full fit:

Parameter Full fit
R_{CP}^{+}(DK) 0.986 \pm 0.014
A_{CP}^{+}(DK) 0.169 \pm 0.019
R_{CP}^{-}(DK) 1.033 \pm 0.012
A_{CP}^{-}(DK) -0.163 \pm 0.018
R_{CP}^{+}(DK^{*}) 0.989 \pm 0.035
A_{CP}^{+}(DK^{*}) 0.157 \pm 0.094
R_{CP}^{-}(DK^{*}) 1.032 \pm 0.043
A_{CP}^{-}(DK^{*}) -0.002 \pm 0.166
R_{CP}^{+}(D^{*}K) 1.048 \pm 0.028
A_{CP}^{+}(D^{*}K) -0.158 \pm 0.036
R_{CP}^{-}(D^{*}K) 0.978 \pm 0.025
A_{CP}^{-}(D^{*}K) 0.173 \pm 0.037
R_{ADS}(DK,K\pi) 0.0154 \pm 0.0014
A_{ADS}(DK,K\pi) -0.536 \pm 0.09
R_{ADS}(DK^{*},K\pi) 0.016 \pm 0.013
A_{ADS}(DK^{*},K\pi) -0.36 \pm 0.26
R_{ADS}(D^{*}K,K\pi,\pi^{0}) 0.0136 \pm 0.0038
A_{ADS}(D^{*}K,K\pi,\pi^{0}) 0.59 \pm 0.17
R_{ADS}(D^{*}K,K\pi,\gamma) 0.0192 \pm 0.0053
A_{ADS}(D^{*}K,K\pi,\gamma) -0.38 \pm 0.15
x^{+}{DK} -0.0961 \pm 0.0092
y^{+}{DK} -0.016 \pm 0.032
x^{-}{DK} 0.073 \pm 0.013
y^{-}(DK) 0.071 \pm 0.012
x^{+}(DK^{*}) -0.091 \pm 0.052
y^{+}(DK^{*}) -0.023 \pm 0.064
x^{-}(DK^{*}) 0.053 \pm 0.051
y^{-}(DK^{*}) 0.067 \pm 0.066
x^{+}(D^{*}K) 0.106 \pm 0.02
y^{+}(D^{*}K) 0.039 \pm 0.033
x^{-}(D^{*}K) -0.064 \pm 0.025
y^{-}(D^{*}K) -0.095 \pm 0.027

The angle \gamma of the CKM triangle can be measured comparing V_{cb} and V_{ub} mediated transitions in B \rightarrow D^{(*)}K^{(*)} decays. The decays proceed through the following diagrams:
Gamma From Trees Diagrams
These diagrams are practically free from the New Physics contribution.

There are three methods to extract relevant information, each of them deals with its own D^{0} decay:

  • a singly Cabibbo-suppressed CP eigenstate, like D^{0}\rightarrow h^+h^- for Gronau-London-Wyler (GLW) method;
  • a doubly Cabibbo-suppressed flavor eigenstate, like D^{0}\rightarrow K^+\pi^- for Atwood-Dunietz-Soni (ADS) method;
  • a Cabibbo-allowed self-conjugate 3-body state, like D^{0} \rightarrow K_{S}\pi^{+}\pi^{-} for Giri-Grossman-Soffer-Zupan (GGSZ) method.

Generally, the observables of the methods also depend on the amplitude ratio r_{B}\equiv\frac{A( b\to u)}{A( b\to c)} and the relative CP conserving phase\delta_{B} between the two amplitudes. These parameters depend on the B decay under investigation.

The Gronau-London-Wyler (GLW) method (M. Gronau, D. Wyler, Phys. Rev. Lett. B {\bf 253} (1991) 483; M. Gronau, D. London, Phys. Rev. Lett. B {\bf 265} (1991) 172) is based on the reconstruction of the B decay to D^{0} K, where D^{0} and \bar D^{0} decay to CP-even or CP-odd eigenstates. The D modes normally used are:
  • CP+: K^{+}K^{-}, \pi^{+}\pi^{-};
  • CP-: K_S\pi^0, \phi K_S, \eta K_S, \rho K_S, and \omega K_{S}.
For the normalization, B^{+} \rightarrow \bar D^{0} K^{+}, with \bar D^0 \rightarrow K^+ \pi^- is also reconstructed.

The four observables for this method are formed in the following way:

R_{CP^{\pm}}=\frac{\Gamma(B^{+}\rightarrow D^0_{\pm}K^+)+\Gamma(B^-\rightarrow D^0_{\pm} K^{-})}{\Gamma(B^{+}\rightarrow D^0 K^+)+\Gamma(B^-\rightarrow \bar D^0 K^{-})}=1+r_{B}^2\pm 2 r_{B}\cos\gamma\cos\delta_{B},

A_{CP^{\pm}}=\frac{\Gamma(B^{+}\rightarrow D^{0}_{\pm} K^{+})-\Gamma(B^{-}\rightarrow D^{0}_{\pm} K^{-})}{\Gamma(B^{+}\rightarrow D^{0}_{\pm} K^{+})+\Gamma(B^{-}\rightarrow D^{0}_{\pm} K^{-})}=\frac{\pm 2 r_{B} \sin\gamma\sin\delta_{B}}{R_{CP^{\pm}}}.

This set can provide an information on \gamma, \delta_{B}, and r_{B} with an 8-fold ambiguity for the phases.

In the ADS method (I. Dunietz, Phys. Rev. Lett. B 270 (1991) 75; Phys. Rev. Lett. D 52 (1995) 3048; D. Atwood, I. Dunietz and A. Soni, Phys. Rev. Lett. 78, 3257 (1997)), \gamma is measured from the study of B\rightarrow DK decays, where D mesons decay into non CP eigenstate final states. The suppression of b\rightarrow u transition with respect to the b \rightarrow c one is partly overcome by the study of decays of the B meson in final states which can proceed in two ways: either through a favored b \rightarrow c B decay followed by a doubly-Cabibbo-suppressed D decay, or through a suppressed b \rightarrow u B decay followed by a Cabibbo-favored D decay.

Neglecting D-mixing effects, which in the SM give very small corrections to \g\ and do not affect the r_{B} measurement, the measured ratios R_{ADS} and A_{ADS} are related to the B and D mesons' decay parameters through the following relations:

R_{\rm ADS}=\frac{\Gamma(B^{+}\rightarrow [\bar f]_{D^{0}} K^{+})+\Gamma(B^{-}\rightarrow [f]_{D^{0}} K^{-})}{\Gamma(B^{+}\to[f]_{D^{0}} K^{+})+\Gamma(B^{-}\to[\bar f]_{D^{0}} K^{-})}=(r_{B}^2+r_{D}^2+2 r_{B} r_{D} k_{D}k_{B}\cos\gamma\cos\delta),

A_{\rm ADS}=\frac{\Gamma(B^{+}\rightarrow [\bar f]_{D^{0}} K^{+})-\Gamma(B^{-}\rightarrow [f]_{D^{0}} K^{-})}{\Gamma(B^{+}\to[f]_{D^{0}} K^{+})+\Gamma(B^{-}\to[\bar f]_{D^{0}} K^{-})}=(r_{B}^2+r_{D}^2+2 r_{B} r_{D} k_{D}k_{B}\sin\gamma\sin\delta)/R_{\rm ADS},

with:

r_{D}^2 \equiv\frac{\Gamma(D^0\to f)}{\Gamma(D^{0}\to \bar f)}=\frac{\int dm\, A_{\rm DCS}(m)}{\int dm\, A_{\rm CA}(m)},

k_{D} e^{i \delta_{D}}= \frac{\int dm\, A_{\rm DCS}(m)A_{\rm CA}e^{i\delta(m)}}{\sqrt{\int dp\, A_{\rm DCS}^2(p)\int dp\, A_{\rm CA}^2(p)}},

In case of the B\to D^{0} K analysis with D^{0}\to K\pi\pi^0 we use the following ratios:

R^{\pm}=\frac{\Gamma(B^{\pm}\rightarrow [\bar f]_{D^{0}} K^{\pm})}{\Gamma(B^{\pm}\to[f]_{D^{0}} K^{\pm})}=(r_{B}^2+r_{D}^2+2 r_{B} r_{D} k_{D}k_{B}\cos(\gamma\pm\delta)),

The used observables are connected to the "classical" R_{\rm ADS} and A_{\rm ADS} set by simple relations: R_{\rm ADS}=\frac{R^{+}+R^{-}}{2} and A_{\rm ADS}=\frac{R^{-}-R^{+}}{R^{-}+R^{+}}.

The values of k_{D} and \delta_D are taken from our study of charm mixing or the CLEO-c collaboration results. The ratio r_D has been measured in different experiments and we take the average value from PDG.

The Giri Grossman Soffer Zupan (GGSZ), also called Dalitz method (A. Giri, Y. Grossman, A. Soffer and J. Zupan, Phys. Rev. D 68, 054018 (2003)) is based on the reconstruction of the B decay to D^{0} K, where D^{0} and \bar D^{0} decay K_S^{0}\pi^{+}\pi^{-};

The four observables for this method are formed in the following way:

x_{\pm}=r_{B}\cos(\gamma\pm\delta_{B}),

y_{\pm}=r_{B}\sin(\gamma\pm\delta_{B}),

 
  Powered by
Foswiki
Ideas, requests, problems regarding this web site? Send feedback