In this page we present the results obtained for a set of interesting UT parameters in the framework of the Standard Model an some New Physics Models using all the available experimental and theoretical inputs which are available. Inputs to this analysis consist of a large body of both experimental measurements and theoretically determined parameters. All the analyses presented here rely on the several measurements: |Vub| / |Vcb|, Dmd, Dms, and the measurements of CP-violating quantities in the kaon (εK) and in the B sectors with the measurements of α (using ππ, ρρ and πρ modes), γ (using D()K() modes), 2β + γ (using D(*)π(ρ) modes), and sin2β and cos 2β from B0 → J/ψKS and B0 → J/ψK* respectively. Among the theoretical parameter, LQCD calculations play a central role

The results are presented in a summary table and in a series of probability density functions. The tables contain three entries per variable : the input ("direct") value, the output value and the prediction ("indirect determination") for this variable in a given model.

The indirect determination of a particular quantity obtained performing the Unitarity Triangle fit in a given Model, including all the available constraints except from the direct measurement of the parameter of interest, gives a prediction of the quantity based on formulas which are valid in that given Model. The interest of this procedure is to quantify the agreement of all the measured quantities by the comparison between indirect parameter determinations and their direct experimental/theortical determinations. Let's consider for example the Standard Model. The comparison between these predictions and a direct measurements can thus quantify the agreement of the single measurement with the overall fit and possibly reveal new physics phenomena.
For some of the quantity we present the so called compatibility plots. In Unitarity Triangle fits based on a χ2 minimization, a conventional evaluation of compatibility stems automatically from the value of the χ2 at its minimum. The compatibility between constraints in the Bayesian approach is simply done by comparing two different p.d.f.’s.

Let us consider, for instance, two p.d.f.’s for a given quantity obtained from the Unitarity Triangle fit, f(x1), and from a direct measurement, f(x2): their compatibility is evaluated by constructing the p.d.f. of the difference variable, x2 − x1, and by estimating the distance of the most probable value from zero in units of standard deviations. The latter is done by integrating this p.d.f. between zero and the most probable value and converting it into the equivalent number of standard deviations for a Gaussian distribution 1. The advantage of this approach is that no approximation is made on the shape of p.d.f.’s. In the following analysis, f(x1) is the p.d.f. predicted by the Unitarity Triangle fit while the p.d.f of the measured quantity, f(x2), is taken Gaussian for simplicity. The number of standard deviations between the measured value, ¯x2 ± σ(x2), and the predicted value (distributed according to f(x1)) is plotted as a function of ¯x2 (x-axis) and σ(x2) (y-axis). The compatibility between x1 and x2 can be then directly estimated on the plot, for any central value and error of the measurement of x2.

The color code indicates the compatibility between direct and indirect determinations, given in terms of standard deviations, as a function of the measured value and its experimental uncertainty. The crosses indicate the direct world average measurement values.

Click on the parameter name to jump to the corresponding plot
Parameter Input value Full fit SM Prediction
\bar{\rho} - 0.132 \pm 0.02 -
\bar{\eta} - 0.358 \pm 0.012 -
\rho - 0.135 \pm 0.021 -
\eta - 0.367 \pm 0.013 -
A - 0.8095 \pm 0.0095 -
\lambda 0.2253 \pm 0.0011 0.22545 \pm 0.00065 -
|V_{ub}| 0.00376 \pm 0.0002 0.00364 \pm 0.00011 0.00355 \pm 0.00014
|V_{cb}| 0.04083 \pm 0.00045 0.04117 \pm 0.00043 0.04269 \pm 0.00099
\sin\theta_{12} - 0.22545 \pm 0.00065 -
\sin\theta_{23} - 0.04117 \pm 0.00043 -
\sin\theta_{13} - 0.00364 \pm 0.00011 -
\delta - 69.7 \pm 2.9 -
m_{b},{\rm {GeV}/c^{2}} 4.21 \pm 0.08 - -
m_{c},{\rm {GeV}/c^{2}} 1.3 \pm 0.1 - -
m_{t},{\rm {GeV}/c^{2}} 163.4 \pm 1.2 163.4 \pm 1.2 163.5 \pm 9.5
\Delta m_{s},{\rm ps^{-1}} 17.77 \pm 0.12 17.77 \pm 0.12 18.3 \pm 1.3
\Delta m_{d},{\rm ps^{-1}} 0.507 \pm 0.005 - -
\Delta m_{K},10^{-15}{\rm ps^{-1}} 1.8 \pm 1.8 - -
f_{B_{s}} 0.239 \pm 0.01 0.2359 \pm 0.0056 0.2349 \pm 0.0067
f_{B_{s}}/f_{B_{d}} 1.23 \pm 0.03 1.225 \pm 0.025 1.213 \pm 0.044
B_{B_{s}}/B_{B_{d}} 1.06 \pm 0.04 1.069 \pm 0.036 1.113 \pm 0.085
B_{B_{s}} 0.87 \pm 0.04 0.845 \pm 0.036 0.769 \pm 0.065
\alpha, [^{\circ}] 91.4 \pm 6.1 87.8 \pm 3.0 85.4 \pm 3.7
\beta, [^{\circ}] - 22.42 \pm 0.74 25.2 \pm 1.6
\sin(2\beta) 0.654 \pm 0.026 0.705 \pm 0.018 0.771 \pm 0.036
\cos(2\beta) 0.87 \pm 0.13 0.71 \pm 0.018 0.639 \pm 0.043
2\beta+\gamma, [^{\circ}] -90 \pm 56 \text{ and } 94 \pm 52 114.7 \pm 3.1 114.9 \pm 3.1
\gamma, [^{\circ}] -106 \pm 11 \text{ and } 74 \pm 11 69.8 \pm 3.0 69.6 \pm 3.1
|\varepsilon_{K}| 0.00222994 \pm 1.04974 \times 10^{-5} 0.00222854 \pm 9.98004 \times 10^{-06} 0.00192 \pm 0.00018
B(B\rightarrow\tau\nu),10^{-4} 1.72 \pm 0.28 0.867 \pm 0.078 0.805 \pm 0.071
J_{cp}\times 10^{5} - 3.09 \pm 0.11 -

The fit results for all the nine CKM elements are
{\small V_{CKM}=\left(\begin{array}{ccc} 0.97425 \pm 0.00015 & 0.22549 \pm 0.00064 & (0.00364 \pm 0.00011)e^{i(-69.7 \pm 2.9)^\circ}\\ -(0.2253 \pm 0.00064)e^{i( 0.0348 \pm 0.0012)^\circ} & 0.97341 \pm 0.00015 & 0.04117 \pm 0.00043 \\ (0.00871 \pm 0.00019)e^{i(-22.46 \pm 0.73)^\circ} & -(0.04039 \pm 0.00043)e^{i( 1.089 \pm 0.038)^\circ} & 0.999145 \pm 1.8\times 10^{-5}\end{array}\right)}




Full fit result for \,\bar{\rho}
0.132 \pm 0.02
95% prob:[0.092, 0.171]
99% prob:[0.074, 0.190]
EPS - PDF - PNG - JPG - GIF



Full fit result for \,\bar{\eta}
0.358 \pm 0.012
95% prob:[0.332, 0.383]
99% prob:[0.321, 0.396]
EPS - PDF - PNG - JPG - GIF



Full fit result for \,\bar{\rho} - \bar{\eta}



EPS - PDF - PNG - JPG - GIF




Full fit result for \,\rho
0.135 \pm 0.021
95% prob:[0.095, 0.175]
99% prob:[0.076, 0.195]
EPS - PDF - PNG - JPG - GIF



Full fit result for \,\eta
0.367 \pm 0.013
95% prob:[0.341, 0.393]
99% prob:[0.329, 0.406]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,A
0.8095 \pm 0.0095
95% prob:[0.791, 0.83]
99% prob:[0.782, 0.839]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,\lambda
0.2253 \pm 0.0011
95% prob:[0.2231, 0.2275]
99% prob:[0.2218, 0.2285]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\lambda
0.22545 \pm 0.00065
95% prob:[0.2242, 0.2268]
99% prob:[0.2236, 0.2274]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,|V_{ub}|
0.00376 \pm 0.0002
95% prob:[0.00340, 0.00428]
99% prob:[0.00327, 0.00463]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,|V_{ub}|
0.00364 \pm 0.00011
95% prob:[0.00342, 0.00386]
99% prob:[0.00332, 0.00399]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,|V_{ub}|
0.00355 \pm 0.00014
95% prob:[0.00327, 0.00385]
99% prob:[0.00313, 0.00401]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,|V_{ub}|



EPS - PDF - PNG - JPG - GIF




Fit Input for \,|V_{cb}|
0.04083 \pm 0.00045
95% prob:[0.03995, 0.04177]
99% prob:[0.03955, 0.04217] U [0.04219, 0.04233]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,|V_{cb}|
0.04117 \pm 0.00043
95% prob:[0.04037, 0.04209]
99% prob:[0.03995, 0.04247]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,|V_{cb}|
0.04269 \pm 0.00099
95% prob:[0.04069, 0.0447]
99% prob:[0.03971, 0.04563]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,|V_{cb}|



EPS - PDF - PNG - JPG - GIF




Full fit result for \,\sin\theta_{12}
0.22545 \pm 0.00065
95% prob:[0.2242, 0.2268]
99% prob:[0.2236, 0.2274]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\sin\theta_{23}
0.04117 \pm 0.00043
95% prob:[0.04033, 0.04209]
99% prob:[0.03993, 0.04251]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\sin\theta_{13}
0.00364 \pm 0.00011
95% prob:[0.00342,0.003867]
99% prob:[0.00332,0.00399]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\delta
69.7 \pm 2.9
95% prob:[63.9, 75.7]
99% prob:[61.1, 78.6]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,m_{t},{\rm {GeV}/c^{2}}
Gaussian likelihood used
163.4 \pm 1.2
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,m_{t},{\rm {GeV}/c^{2}}
163.4 \pm 1.2
95% prob:[161, 165.7]
99% prob:[159.9, 166.9]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,m_{t},{\rm {GeV}/c^{2}}
163.5 \pm 9.5
95% prob:[144.7, 183.1]
99% prob:[137.6, 194.2]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,m_{t},{\rm {GeV}/c^{2}}



EPS - PDF - PNG - JPG - GIF




Fit Input for \,\Delta m_{s},{\rm ps^{-1}}
Gaussian likelihood used
17.77 \pm 0.12
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\Delta m_{s},{\rm ps^{-1}}
17.77 \pm 0.12
95% prob:[17.5, 18.0]
99% prob:[17.4, 18.1]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,\Delta m_{s},{\rm ps^{-1}}
18.3 \pm 1.3
95% prob:[15.9, 20.9]
99% prob:[14.8, 22.3]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,\Delta m_{s},{\rm ps^{-1}}



EPS - PDF - PNG - JPG - GIF




Fit Input for \,f_{B_{s}}
Gaussian likelihood used
0.239 \pm 0.01
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,f_{B_{s}}
0.2359 \pm 0.0056
95% prob:[0.2252, 0.2477]
99% prob:[0.22, 0.2537]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,f_{B_{s}}
0.2349 \pm 0.0067
95% prob:[0.2221, 0.2491]
99% prob:[0.217, 0.2571]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,f_{B_{s}}



EPS - PDF - PNG - JPG - GIF




Fit Input for \,f_{B_{s}}/f_{B_{d}}
Gaussian likelihood used
1.23 \pm 0.03
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,f_{B_{s}}/f_{B_{d}}
1.225 \pm 0.025
95% prob:[1.175, 1.275]
99% prob:[1.151, 1.299]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,f_{B_{s}}/f_{B_{d}}
1.213 \pm 0.044
95% prob:[1.13, 1.303]
99% prob:[1.083, 1.085] U [1.093, 1.352]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,f_{B_{s}}/f_{B_{d}}



EPS - PDF - PNG - JPG - GIF




Fit Input for \,B_{B_{s}}/B_{B_{d}}
Gaussian likelihood used
1.06 \pm 0.04
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,B_{B_{s}}/B_{B_{d}}
1.069 \pm 0.036
95% prob:[0.997, 1.141]
99% prob:[0.963, 1.179]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,B_{B_{s}}/B_{B_{d}}
1.113 \pm 0.085
95% prob:[0.96, 1.279]
99% prob:[0.893, 1.3]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,B_{B_{s}}/B_{B_{d}}



EPS - PDF - PNG - JPG - GIF




Fit Input for \,B_{B_{s}}
Gaussian likelihood used
0.87 \pm 0.04
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,B_{B_{s}}
0.845 \pm 0.036
95% prob:[0.775, 0.919]
99% prob:[0.738, 0.954]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,B_{B_{s}}
0.769 \pm 0.065
95% prob:[0.648, 0.915]
99% prob:[0.608, 0.999]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,B_{B_{s}}



EPS - PDF - PNG - JPG - GIF




Fit Input for \,\alpha, [^{\circ}]
91.4 \pm 6.1
95% prob:[81, 102.] U [161., 169]
99% prob:[76.8, 108.] U [157., 171.]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\alpha, [^{\circ}]
87.8 \pm 3.0
95% prob:[82.1, 93.8]
99% prob:[79.2, 96.2]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,\alpha, [^{\circ}]
85.4 \pm 3.7
95% prob:[78.3, 93.2]
99% prob:[74.5, 96.2]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,\alpha, [^{\circ}]



EPS - PDF - PNG - JPG - GIF




Full Fit result for \,\beta, [^{\circ}]
22.42 \pm 0.74
95% prob:[20.9, 23.9]
99% prob:[20.2, 24.7]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,\beta, [^{\circ}]
25.2 \pm 1.6
95% prob:[22.3, 28.6]
99% prob:[21.3, 30.2]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,\sin(2\beta)
0.654 \pm 0.026
95% prob:[0.601, 0.708]
99% prob:[0.574, 0.735]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\sin(2\beta)
0.705 \pm 0.018
95% prob:[0.669, 0.742]
99% prob:[0.651, 0.762]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,\sin(2\beta)
0.771 \pm 0.036
95% prob:[0.706, 0.844]
99% prob:[0.68, 0.872] U [0.875, 0.878]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,\sin(2\beta)



EPS - PDF - PNG - JPG - GIF




Fit Input for \,\cos(2\beta)
0.87 \pm 0.13
95% prob:[0.44, 0.99]
99% prob:[0.12, 0.99]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\cos(2\beta)
0.71 \pm 0.018
95% prob:[0.672, 0.745]
99% prob:[0.649, 0.76]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,\cos(2\beta)
0.639 \pm 0.043
95% prob:[0.544, 0.712]
99% prob:[0.507, 0.731]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,\cos(2\beta)



EPS - PDF - PNG - JPG - GIF




Fit Input for \,2\beta+\gamma, [^{\circ}]
-90 \pm 56 \text{ and } 94 \pm 52
95% prob:[-166, 166.]
99% prob:[-179, 179]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,2\beta+\gamma, [^{\circ}]
114.7 \pm 3.1
95% prob:[108.3, 120.7]
99% prob:[105.6, 123.4]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,2\beta+\gamma, [^{\circ}]
114.9 \pm 3.1
95% prob:[108.6, 120.9]
99% prob:[105.8, 123.6]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,2\beta+\gamma, [^{\circ}]



EPS - PDF - PNG - JPG - GIF




Fit Input for \,\gamma, [^{\circ}]
-106 \pm 11 \text{ and } 74 \pm 11
95% prob:[-128, -85.] U [52.1, 94.4]
99% prob:[-139, -75.] U [41.4, 104.]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\gamma, [^{\circ}]
69.8 \pm 3.0
95% prob:[63.9, 75.7]
99% prob:[61, 78.5]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,\gamma, [^{\circ}]
69.6 \pm 3.1
95% prob:[63.4, 75.6]
99% prob:[60.5, 78.8]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,\gamma, [^{\circ}]



EPS - PDF - PNG - JPG - GIF




Fit Input for \,|\varepsilon_{K}|
0.00222994 \pm 1.04974\times 10^{-5}
95% prob:[0.00220745, 0.00224944]
99% prob:[0.00219845, 0.00225644]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,|\varepsilon_{K}|
0.00222854 \pm 9.98004\times 10^{-06}
95% prob:[0.00220858, 0.0022485]
99% prob:[0.0021986, 0.00225848]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,|\varepsilon_{K}|
0.00192 \pm 0.00018
95% prob:[0.00157, 0.00230]
99% prob:[0.00141, 0.00252]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,|\varepsilon_{K}|



EPS - PDF - PNG - JPG - GIF




Fit Input for \,B(B\rightarrow\tau
u),10^{-4}
Gaussian likelihood used
1.72 \pm 0.28
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,B(B\rightarrow\tau
u),10^{-4}
0.867 \pm 0.078
95% prob:[0.721, 1.031]
99% prob:[0.661, 1.127]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,B(B\rightarrow\tau
u),10^{-4}
0.805 \pm 0.071
95% prob:[0.674, 0.958]
99% prob:[0.619, 1.051]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,B(B\rightarrow\tau
u),10^{-4}



EPS - PDF - PNG - JPG - GIF




Full fit result for \,J_{cp}\times 10^{-5}
3.09 \pm 0.11
95% prob:[2.87, 3.30]
99% prob:[2.77, 3.42]
EPS - PDF - PNG - JPG - GIF

Constraints, Parameters Value Gaussian Error Flat Error Comments
\lambda 0.2258 0.0014 - -
\left | V_{cb} \right |~[10^{-3}] 39.2 1.1 - Average of exclusive
\left | V_{cb} \right |~[10^{-3}] 41.7 0.7 - Average of inclusive
\left | V_{ub} \right |~[10^{-4}] \mathrm{(excl.)} 35.0 4.0 - HFAG BR + Lattice QCD
\left | V_{ub} \right |~[10^{-4}] \mathrm{(incl.)} 39.9 1.5 4.0 HFAG average
m_b 4.21 0.08 - -
m_c 1.3 0.1 - -
\Delta m_d~[ps^{-1}] 0.507 0.005 - WA (CDF/CLEO/LEP/BaBar/Belle)
\Delta m_s~[ps^{-1}] 17.77 0.12 - CDF Likelihood is used
m_t~[GeV/c^2] 161.2 1.7 - (CDF/D0)
f_{B_s}\sqrt{B_{B_s}}~[MeV] 270 30 - Lattice QCD
\xi 1.21 0.04 - Lattice QCD
|\varepsilon_K|~[10^{-3}] 2.228 0.011 - -
B_K 0.75 0.07 - Lattice QCD
f_K~[GeV] 0.160 - - -
\Delta m_K~[10^{-2}~ps^{-1}] 0.5301 - - -
M_{K^0}~[GeV/c^2] 0.497648 - - -

Under construction

In the Unitarity Triangle fits the non perturbative QCD parameters enter in the expressions of several contraints : \Delta m_s, \Delta m_d, \epsilon_K, B \rightarrow \tau \nu,. Let's consider schematically the dependence of these observable in terms of the non perturbative QCD parameters :

\Delta m_s \propto f_{Bs} \sqrt{B_{Bs}} \\
            \Delta m_d \propto f_{Bd} \sqrt{B_{Bd}}  =   \frac{f_{Bs}}{\xi}  \times  \sqrt{B_{Bs}}  \\
            Br(B \rightarrow \tau \nu)  \propto  f_{Bd}^2 =    \frac{f_{Bs}^2}{\xi^2}   \times  \frac{{B_{Bs}}}{{B_{Bd}}} \\
            \epsilon_K \propto B_K  \\.

We decide to express these observable in terms of five LQCD parameters

f_{Bs},   \quad B_{Bs}, \quad   \xi,   \quad  \frac{{B_{Bs}}}{{B_{Bd}}},  \quad   B_K

The reason of this choice is to maxime the parameters on the Bs sector and parameters which are mostly uncorrelated. To this set of five parameters we should add the non perturbative parameters entering in the expression of V_{ub}(exclusive) and V_{cs}.

 
  Powered by
Foswiki
Ideas, requests, problems regarding this web site? Send feedback