Line: 1 to 1 | ||||||||
---|---|---|---|---|---|---|---|---|
Changed: | ||||||||
< < |
Under construction
The Cabibbo-Kobayashi-Maskawa ( CKM) matrixis a 3x3 unitary matrix which originates from the misalignment in flavour space of the up and down components of the | |||||||
> > |
| |||||||
-\sin\theta_{12}\cos\theta_{23}-\cos\theta_{12}\sin\theta_{13}\sin\theta_{23}\, e^{i\delta} & \cos\theta_{12}\cos\theta_{23}-\sin\theta_{12}\sin\theta_{13}\sin\theta_{23}\, e^{i\delta} & \cos\theta_{13}\sin\theta_{23}\ | ||||||||
Changed: | ||||||||
< < |
\sin\theta_{12}\sin\theta_{23}-\cos\theta_{12}\sin\theta_{13}\cos\theta_{23}\, e^{i\delta} & -\cos\theta_{12}\sin\theta_{23}-\sin\theta_{12}\sin\theta_{13}\cos\theta_{23}\, e^{i\delta} & \cos\theta_{13}\cos\theta_{23}\end{array}\right)\,. The relations induced by the unitarity of the CKM matrix include six "triangular" relations, among which is referred to as the Unitarity Triangle ( UT). It can be rewritten as with ![]() ![]() ![]() ![]() ![]() namely by the coordinates ![]() ![]() ![]()
| |||||||
> > |
\sin\theta_{12}\sin\theta_{23}-\cos\theta_{12}\sin\theta_{13}\cos\theta_{23}\, e^{i\delta} & -\cos\theta_{12}\sin\theta_{23}-\sin\theta_{12}\sin\theta_{13}\cos\theta_{23}\, e^{i\delta} & \cos\theta_{13}\cos\theta_{23}\end{array}\right)\,.
The relations induced by the unitarity of the CKM matrix include six "triangular" relations, among which
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |||||||
\cos\theta_{12}=\frac{\vert V_{ud}\vert}{\cos\theta_{13}}, & \sin\theta_{12}=\sqrt{1-\cos^2\theta_{12}},\\sin\theta_{23}=\frac{\vert V_{cb}\vert}{\cos\theta_{13}}, & \cos\theta_{23}=\sqrt{1-\sin^2\theta_{23}},\end{array} ~~\delta=2\arctan\left(\frac{1\mp\sqrt{1-(a^2-1)\tan^2\gamma}}{(a-1)\tan\gamma}\right), ~a=\frac{\cos\theta_{12}\sin\theta_{13}\sin\theta_{23}}{\sin\theta_{12}\cos\theta_{23}}. | ||||||||
Changed: | ||||||||
< < |
The sign ![]() ![]() ![]() ![]() ![]() The CKM matrix can be expanded as The exact and expanded relations between the UT apex coordinates ![]() At the lowest order in ![]() ![]() ![]() ![]() ![]() | |||||||
> > |
The sign ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Line: 1 to 1 | ||||||||
---|---|---|---|---|---|---|---|---|
Under construction | ||||||||
Changed: | ||||||||
< < |
The Cabibbo-Kobayashi-Maskawa ( CKM) matrixis a 3x3 unitary matrix which originates from the misalignment in flavour space of the up and down components of the | |||||||
> > |
The Cabibbo-Kobayashi-Maskawa ( CKM) matrixis a 3x3 unitary matrix which originates from the misalignment in flavour space of the up and down components of the | |||||||
-\sin\theta_{12}\cos\theta_{23}-\cos\theta_{12}\sin\theta_{13}\sin\theta_{23}\, e^{i\delta} & \cos\theta_{12}\cos\theta_{23}-\sin\theta_{12}\sin\theta_{13}\sin\theta_{23}\, e^{i\delta} & \cos\theta_{13}\sin\theta_{23}\\sin\theta_{12}\sin\theta_{23}-\cos\theta_{12}\sin\theta_{13}\cos\theta_{23}\, e^{i\delta} & -\cos\theta_{12}\sin\theta_{23}-\sin\theta_{12}\sin\theta_{13}\cos\theta_{23}\, e^{i\delta} & \cos\theta_{13}\cos\theta_{23}\end{array}\right)\,. The relations induced by the unitarity of the CKM matrix include six "triangular" relations, among which is referred to as the Unitarity Triangle ( UT). It can be rewritten as with ![]() ![]() ![]() ![]() ![]() namely by the coordinates ![]() ![]() ![]()
| ||||||||
Changed: | ||||||||
< < |
The sign ![]() ![]() ![]() ![]() ![]() The CKM matrix can be expanded as The exact and expanded relations between ![]() At the lowest order in ![]() ![]() ![]() ![]() ![]() | |||||||
> > |
The sign ![]() ![]() ![]() ![]() ![]() The CKM matrix can be expanded as The exact and expanded relations between the UT apex coordinates ![]() At the lowest order in ![]() ![]() ![]() ![]() ![]() |
Line: 1 to 1 | ||||||||
---|---|---|---|---|---|---|---|---|
Under construction | ||||||||
Changed: | ||||||||
< < |
The Cabibbo-Kobayashi-Maskawa ( CKM) matrixis a 3x3 unitary matrix which originates from the disalignment in flavour space of the up and down components of the | |||||||
> > |
The Cabibbo-Kobayashi-Maskawa ( CKM) matrixis a 3x3 unitary matrix which originates from the misalignment in flavour space of the up and down components of the | |||||||
-\sin\theta_{12}\cos\theta_{23}-\cos\theta_{12}\sin\theta_{13}\sin\theta_{23}\, e^{i\delta} & \cos\theta_{12}\cos\theta_{23}-\sin\theta_{12}\sin\theta_{13}\sin\theta_{23}\, e^{i\delta} & \cos\theta_{13}\sin\theta_{23}\\sin\theta_{12}\sin\theta_{23}-\cos\theta_{12}\sin\theta_{13}\cos\theta_{23}\, e^{i\delta} & -\cos\theta_{12}\sin\theta_{23}-\sin\theta_{12}\sin\theta_{13}\cos\theta_{23}\, e^{i\delta} & \cos\theta_{13}\cos\theta_{23}\end{array}\right)\,. The relations induced by the unitarity of the CKM matrix include six "triangular" relations, among which is referred to as the Unitarity Triangle ( UT). It can be rewritten as with ![]() ![]() ![]() ![]() ![]() namely by the coordinates ![]() ![]() ![]()
|
Line: 1 to 1 | ||||||||
---|---|---|---|---|---|---|---|---|
Under construction
The Cabibbo-Kobayashi-Maskawa ( CKM) matrixis a 3x3 unitary matrix which originates from the disalignment in flavour space of the up and down components of the | ||||||||
Line: 7 to 7 | ||||||||
\sin\theta_{23}=\frac{\vert V_{cb}\vert}{\cos\theta_{13}}, & \cos\theta_{23}=\sqrt{1-\sin^2\theta_{23}},\end{array} ~~\delta=2\arctan\left(\frac{1\mp\sqrt{1-(a^2-1)\tan^2\gamma}}{(a-1)\tan\gamma}\right), ~a=\frac{\cos\theta_{12}\sin\theta_{13}\sin\theta_{23}}{\sin\theta_{12}\cos\theta_{23}}. | ||||||||
Changed: | ||||||||
< < |
The sign ![]() ![]() ![]() ![]() ![]() At the first order, ![]() ![]() ![]() ![]() ![]() ![]() ![]() </latex></latex> | |||||||
> > |
The sign ![]() ![]() ![]() ![]() ![]() The CKM matrix can be expanded as The exact and expanded relations between ![]() At the lowest order in ![]() ![]() ![]() ![]() ![]() |
Line: 1 to 1 | ||||||||
---|---|---|---|---|---|---|---|---|
Under construction | ||||||||
Changed: | ||||||||
< < |
The Cabibbo-Kobayashi-Maskawa ( CKM) matrixis a 3x3 unitary matrix which originates from the disalignment in flavour space of the up and down components of the | |||||||
> > |
The Cabibbo-Kobayashi-Maskawa ( CKM) matrixis a 3x3 unitary matrix which originates from the disalignment in flavour space of the up and down components of the | |||||||
-\sin\theta_{12}\cos\theta_{23}-\cos\theta_{12}\sin\theta_{13}\sin\theta_{23}\, e^{i\delta} & \cos\theta_{12}\cos\theta_{23}-\sin\theta_{12}\sin\theta_{13}\sin\theta_{23}\, e^{i\delta} & \cos\theta_{13}\sin\theta_{23}\ | ||||||||
Changed: | ||||||||
< < |
\sin\theta_{12}\sin\theta_{23}-\cos\theta_{12}\sin\theta_{13}\cos\theta_{23}\, e^{i\delta} & -\cos\theta_{12}\sin\theta_{23}-\sin\theta_{12}\sin\theta_{13}\cos\theta_{23}\, e^{i\delta} & \cos\theta_{13}\cos\theta_{23}\end{array}\right)\,. We start extracting the CKM parameters from the measurements of ![]() ![]()
| |||||||
> > |
\sin\theta_{12}\sin\theta_{23}-\cos\theta_{12}\sin\theta_{13}\cos\theta_{23}\, e^{i\delta} & -\cos\theta_{12}\sin\theta_{23}-\sin\theta_{12}\sin\theta_{13}\cos\theta_{23}\, e^{i\delta} & \cos\theta_{13}\cos\theta_{23}\end{array}\right)\,. The relations induced by the unitarity of the CKM matrix include six "triangular" relations, among which is referred to as the Unitarity Triangle ( UT). It can be rewritten as with ![]() ![]() ![]() ![]() ![]() namely by the coordinates ![]() ![]() ![]()
| |||||||
\cos\theta_{12}=\frac{\vert V_{ud}\vert}{\cos\theta_{13}}, & \sin\theta_{12}=\sqrt{1-\cos^2\theta_{12}},\\sin\theta_{23}=\frac{\vert V_{cb}\vert}{\cos\theta_{13}}, & \cos\theta_{23}=\sqrt{1-\sin^2\theta_{23}},\end{array} ~~\delta=2\arctan\left(\frac{1\mp\sqrt{1-(a^2-1)\tan^2\gamma}}{(a-1)\tan\gamma}\right), ~a=\frac{\cos\theta_{12}\sin\theta_{13}\sin\theta_{23}}{\sin\theta_{12}\cos\theta_{23}}. | ||||||||
Changed: | ||||||||
< < |
The sign ![]() ![]() ![]() ![]() ![]() The relations induced by the unitarity of the CKM matrix include six "triangular" relations, among which is referred to as the Unitarity Triangle ( UT). It can be rewritten as with | |||||||
> > |
The sign ![]() ![]() ![]() ![]() ![]() At the first order, ![]() ![]() ![]() ![]() ![]() ![]() ![]() </latex></latex> |
Line: 1 to 1 | ||||||||
---|---|---|---|---|---|---|---|---|
Under construction
The Cabibbo-Kobayashi-Maskawa ( CKM) matrixis a 3x3 unitary matrix which originates from the disalignment in flavour space of the up and down components of the |
Line: 1 to 1 | ||||||||
---|---|---|---|---|---|---|---|---|
Under construction
The Cabibbo-Kobayashi-Maskawa ( CKM) matrixis a 3x3 unitary matrix which originates from the disalignment in flavour space of the up and down components of the | ||||||||
Line: 7 to 7 | ||||||||
\sin\theta_{23}=\frac{\vert V_{cb}\vert}{\cos\theta_{13}}, & \cos\theta_{23}=\sqrt{1-\sin^2\theta_{23}},\end{array} ~~\delta=2\arctan\left(\frac{1\mp\sqrt{1-(a^2-1)\tan^2\gamma}}{(a-1)\tan\gamma}\right), ~a=\frac{\cos\theta_{12}\sin\theta_{13}\sin\theta_{23}}{\sin\theta_{12}\cos\theta_{23}}. | ||||||||
Changed: | ||||||||
< < |
The sign ![]() ![]() ![]() ![]() ![]() The relations induced by the unitarity of the CKM matrix include six "triangular" relations, among which is referred to as the Unitarity Triangle ( UT). It can be rewritten as with | |||||||
> > |
The sign ![]() ![]() ![]() ![]() ![]() The relations induced by the unitarity of the CKM matrix include six "triangular" relations, among which is referred to as the Unitarity Triangle ( UT). It can be rewritten as with |
Line: 1 to 1 | ||||||||
---|---|---|---|---|---|---|---|---|
Under construction | ||||||||
Changed: | ||||||||
< < |
The Cabibbo-Kobayashi-Maskawa ( CKM) matrixis a 3x3 unitary matrix which originates from the disalignment in flavour space of the up and down components of the | |||||||
> > |
The Cabibbo-Kobayashi-Maskawa ( CKM) matrixis a 3x3 unitary matrix which originates from the disalignment in flavour space of the up and down components of the | |||||||
\cos\theta_{12}=\frac{\vert V_{ud}\vert}{\cos\theta_{13}}, & \sin\theta_{12}=\sqrt{1-\cos^2\theta_{12}},\\sin\theta_{23}=\frac{\vert V_{cb}\vert}{\cos\theta_{13}}, & \cos\theta_{23}=\sqrt{1-\sin^2\theta_{23}},\end{array} ~~\delta=2\arctan\left(\frac{1\mp\sqrt{1-(a^2-1)\tan^2\gamma}}{(a-1)\tan\gamma}\right), ~a=\frac{\cos\theta_{12}\sin\theta_{13}\sin\theta_{23}}{\sin\theta_{12}\cos\theta_{23}}. | ||||||||
Changed: | ||||||||
< < |
The sign ![]() ![]() ![]() | |||||||
> > |
The sign ![]() ![]() ![]() ![]() ![]() The relations induced by the unitarity of the CKM matrix include six "triangular" relations, among which is referred to as the Unitarity Triangle ( UT). It can be rewritten as with |
Line: 1 to 1 | ||||||||
---|---|---|---|---|---|---|---|---|
Under construction | ||||||||
Changed: | ||||||||
< < |
| |||||||
> > |
The Cabibbo-Kobayashi-Maskawa ( CKM) matrixis a 3x3 unitary matrix which originates from the disalignment in flavour space of the up and down components of the |
Line: 1 to 1 | ||||||||
---|---|---|---|---|---|---|---|---|
Under construction | ||||||||
Added: | ||||||||
> > |
|